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We consider the deterministic escape dynamics of a lattice chain of harmonically coupled particles from a
metastable state over a one-dimensional potential barrier. While the case of periodic lattices has already been
elaborated, the aim of the present work is to explore the extension to nonperiodic, i.e., disordered, lattices.
Each particle evolves in an individual local potential, which is characterized by a harmonic term and a
nonlinear term. Two kinds of parametric disorder are considered. “Disorder in nonlinearity” is only caused by
different nonlinear terms—“disorder in harmonicity” only by different harmonic terms. We assure that the two
kinds of disorder, with their individual potential barriers uniformly distributed around a globally equal mean
barrier height, exhibit a comparable strength of disorder. Starting with an initial completely delocalized state,
we observe localization of energy and formation of breathers ensues. It is shown that increasing disorder in
nonlinearity decreases the mean escape time opposite to increasing mean escape times resulting from increased
disorder in harmonicity. Comparison with the mean escape time obtained for a third kind of parametric disorder
characterized by overall equal barrier heights leads to the conclusion that indeed inhomogeneous barriers
facilitate the speedy escape.
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I. INTRODUCTION

Escapes from metastable states and transitions between
them play an important role in many physical systems �1,2�.
An energetic barrier blocks the escape from the metastable
state to an adjacent attracting domain. One means of over-
coming the barrier is due to the injection of sufficiently
enough energy into the system supplied by an external heat
bath. On the other hand, in the absence of any external en-
ergy source, the energy once allocated has to suffice for per-
forming the task of barrier crossing. In such microcanonical
situations, solely the underlying deterministic and conserva-
tive nonlinear dynamics promotes escape events as described
in �3�. There, it has been demonstrated that the barrier cross-
ing of a chain of coupled nonlinear oscillators can be reached
spontaneously. In fact, starting with a flat state configuration
of the chain, where each of its constituents possesses too
little energy to overcome the barrier on its own, the associ-
ated critical localized mode, viz., the transition state, can be
reached by localizing energy to a few oscillators in a self-
organized manner. This nonlinear process, intrinsic to many
nonlinear and spatially periodic lattice systems �4,5�, is con-
nected with the emergence and enhancement of breather
states. Conversely, localization in linear but spatially nonpe-
riodic �disordered� lattice systems is related to the phenom-
enon of Anderson localization for which all eigenmodes of
an one-dimensional system are exponentially localized rep-
resenting pinned �immobile� states. Hence, no energy trans-
port is possible.

The interplay between nonlinearity and disorder with re-
gard to energy transport in disordered nonlinear lattice sys-
tems has attracted considerable interest lately �4,6–12�.
These studies focused interest on the transport properties of
systems exhibiting linear Anderson localization when nonlin-
earity is added. That is, the initial lattice configuration is a

localized wave packet. It has been found that with the addi-
tional presence of nonlinearity the spreading of an initially
localized wave packet is induced �11�.

With the present paper, our consideration of the interplay
between nonlinearity and disorder is based on an approach
opposite to that in �6–12�, namely, we consider the possible
localization of an initially extended homogeneous lattice
state. In more detail, we are interested in self-organized es-
cape dynamics of particles starting from a completely delo-
calized state in a conservative, deterministic Klein-Gordon
lattice with a disordered archetypical anharmonic local po-
tential. The potential exhibits a barrier separating a meta-
stable state from an attractive region. We explore the dynam-
ics of macroscopic discrete, nonlinear oscillator chains in
such a metastable potential. This may appear as a realistic
model for molecular chains which exit out of basins of at-
traction or surmounting energetic thresholds. Furthermore, it
may describe the breaking of bound states of duplex chains
or a molecular chain crossing a spatial barrier that blocks the
immediate access to a reactant pathway. The ordered limiting
case of our system has been studied in �3,13–16�. For long
chains, a formation of discrete breathers occurs from an al-
most homogeneous initial state due to modulational instabil-
ity. As a result, a successive escape of the particles beyond
the barrier is caused providing the associated transition state
is overcome. Assuming also a constant energy, the question
addressed here is: how does disorder of the local potential
affect the localization behavior of the system, the escape
dynamics, and mainly the escape times? To tackle this prob-
lem, a system with displaceable different kinds of disorder
and associated adjustable strengths of disorder will be con-
structed in Sec. II. Due to two independent parameters of the
local potential, we treat kinds of disorder that could cause
qualitatively different interplay of Anderson localization and
discrete breathers and could entail scenarios manifesting
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clearly the influence of the nonlinearity or inhomogeneity of
the barrier energies on the escape dynamics. The mean es-
cape time of ensembles of systems with various kinds of
disorder is calculated in Sec. III A. We show details of the
energy localization by consulting measurements which de-
scribe the capability of the chain to perform a self-organized
escape. In the last part, we concentrate on the important role
of the affection of energy localization to certain particles
depending on the features of the respective local potential. In
the closing, Sec. VI, we formulate a summary and an out-
look.

II. DISORDERED, NONLINEAR LATTICE MODEL

We present the disordered, nonlinear lattice model de-
scribing the coupled dynamics of N particles constituting a
one-dimensional chain. The particles are assumed to be of
mass equal one. The conservative and deterministic dynam-
ics is based on the following Hamiltonian:

H = �
n=1

N � pn
2

2
+ Un�qn� +

�

2
�qn+1 − qn�2� = const = E . �1�

qn and pn correspond to the coordinate and momentum of the
nth particle, respectively. In addition to motion in the indi-
vidual potential Un each particle is harmonically coupled to
its nearest neighbors with interaction strength �. We impose
periodic boundary conditions: q1=qN+1 and qN=q0.

A. On-site potentials

Disorder is contained in the parameters of the local poten-
tial. By disorder, we mean that each oscillator evolves in an
individual cubic single well on-site potential of the form

Un�qn� =
�n

2

2
qn

2 −
an

3
qn

3, with �n
2 � 0 and an � 0,

�2�

whose individuality is characterized by the harmonicity pa-
rameter �n

2 and the anharmonicity parameter an. For fixed
values of �n

2=2, an=1 the potential is plotted in Fig. 1. Un
exhibits an equilibrium at qn;min=0, corresponding to
Un�qn;min�=0, which is stable for an=0 and metastable for
an�0. In case an�0, a second zero-point of the potential,
Un=0, can be found at

qn;zero =
3�n

2

2an
, �3�

and there is, furthermore, a local maximum of the potential
at

qn;max =
�n

2

an
�4�

representing an energy barrier

Bn ª Un�qn;max� − Un�qn;min�
=0

=
�n

6

6an
2 �5�

for particles leaving the well in the positive �negative� direc-
tion for an�0 �an�0�. We focus on two main kinds of dis-
order, which are both connected with inhomogeneous barri-
ers. In addition, we investigate very selectively disorders
with homogeneous barriers or without any barriers.

Expecting that the height of the barrier affects the ardu-
ousness for the chain to escape from the metastable state, we
appoint mean barrier energies.

We consider a chain with N�1 particles. The system is
deterministic and we understand “disorder” as a stochastic
term, i.e., we take a uniform randomized sequence
B1 ,B2 , . . . ,BN, so that Bn� �B−�B ,B+�B�. In these ways,
larger values of the “disorder parameter” �B express stron-
ger degree of disorder. As shown in �3� for ordered media,
the mean escape time the chain needs to overcome the bar-
rier, increases with decreasing ratio of the initial energy to
the �homogeneous� barrier energy. Since we are interested in
what way different kinds of disorder impede or facilitate the
escape and Bn depends on an and �n

2, we keep the mean
barrier of the on-site potentials constant and fix the value B
=4 /3 throughout the paper.

We distinguish between the following different kinds of
disorder.

1. Disorder in an

The inhomogeneity in Un is here caused only by the vari-
able an. The site harmonicity parameters are chosen constant

�n
2=! 2 ¬ �2, �6�

⇒an =
�5� 2

�3Bn

. �7�

Concerning the degree of disorder, we assume a maximal
value �B=0.5, which allows us to perform simulations in an
interval of sufficiently strong degree of disorder that, on the
other hand, is not too broad to request unreasonable numeri-
cal efforts.

As the influence of different anharmonicity parameter val-
ues on the shape of the potential Un is concerned, we remark
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FIG. 1. On-site potential Un�qn� given in Eq. �2� with �n
2=2 and

an=1.
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that varying an has much weaker effect on the linear regime
�near qn;min=0� than on the barrier energies. The larger an the
lower are the barriers and the closer they are situated to the
valley and vice versa.

2. Disorder in �n
2

In this case, an is constant and �n
2 is variable

an=! 1 ¬ a , �8�

⇒�n
2 =

�5�
�3 6Bn. �9�

�n
2 over Bn has a positive slope, but the dependence around

Bn=B is nearly linearlike for disorder in an.
For lower values of the harmonicity parameter particles

have to overcome lower barriers. The influence of disorder in
�n

2 on the “harmonic” area around qn;min=0 is much stronger
than in case of disorder in an due to the cubic factor qn

3,
which is multiplied by an in the on-site potential expression
�2�.

The question surrounding the following sections is how
these two kinds of disorder influence the escape dynamics
from the potential well beyond the barrier. Both kinds show
in part remarkable similar features. First, lower barriers come
nearer to the potential well. Second, on-site potentials with
lower barriers are softer compared to those with higher bar-
riers.

To understand the effect of inhomogeneous barrier heights
and the role of the nonlinearity in the cases disorder in an and
disorder in �n

2, we consider separately a disordered scenario
with homogeneous barrier height and a linear one with dis-
order, respectively.

3. Disorder with constant Bn

Apparently, this is not realizable keeping the anharmonic-
ity parameter or the harmonicity parameter constant. We use
the sequences an from case disorder in an given in Eq. �7� to
calculate �n

2. Arranging

�n
2 = �3 6Ban

2 �10�

yields

Bn =
�5� ��n

2�3

6an
2 =

�10�

B . �11�

Since the sequence an has originated from the barrier ener-
gies of the case disorder in an, i.e., not from the barriers
defined through Eq. �11�, we have to introduce a special
parameter

B̃n =
��2�3

6an
2 =

�6� 8

6an
2 ,

which we call the “descriptive parameter.” Thus,

an =
2

�3B̃n

�12�

is the argument to be inserted into Eq. �10� and B̃n are the
quantities, which define all on-site potentials of the disorder

with constant Bn and for which the mean value is B. Thus,

the �uniform� distribution of B̃n quantifies this disorder, i.e.,

B̃n� �B−�B ,B+�B�.
Regarding once more the definition of Un in Eq. �2�, due

to the different powers of the qn terms the influence of inho-
mogeneous �n

2 on Un is the more dominant compared to the
effect of variable an the smaller the values 	qn	 are. Thus,
disorder with constant barriers resembles for small 	qn	 the
situation with disorder in �n

2 rather than disorder in an.

4. Linear disorder

Here, we take �n
2 from disorder in �n

2 and set an=0.
Hence, the barrier ceases to exist. The values of the descrip-
tive parameter are the barriers from the case disorder in �n

2

B̃n =
��n

2�3

6a2 =
�8� ��n

2�3

6
.

Thus, �n
2 yields

�n
2 = �3 6B̃n. �13�

Since an=0, purely harmonic oscillators with variable fre-
quencies remain. The system becomes linear and integrable.
The influence of disorder on the region near qn=0 is compa-
rable to the case disorder in �n

2 �with an=1�, i.e., it is rather
strong.

Regarding the organizations of the different kinds of dis-
order, we note that first, settling a sequence of the descriptive
parameter and second, choose one of the four described cases
also determines the sequences an, �n

2, and thus Un.

B. Equations of motion

The 2N Hamiltonian equations �H /�pn= q̇n and �H /�qn
=−ṗn can be written as a system of N equations of second
order

q̈n + �n
2qn − anqn

2 − ��qn+1 + qn−1 − 2qn� = 0, n = 1, . . . ,N .

�14�

We arrange initial conditions of the form

qn�t = 0� = 0; pn�t = 0� ¬ p0. �15�

Therefore, the energy E=Np0
2 /2 is initially completely ki-

netic and does not depend on the disorder contained in the
potential term. On the other hand, the chain needs disorder to
elongate, i.e., otherwise the problem becomes trivial in terms
of equal amplitudes q1�t�=q2�t�= ¯ =qN�t� for all times.
Furthermore, due to the initial conditions �15� the system
energy is at the beginning totally nonlocalized, i.e., every
unit has the same energy at t=0. So, three questions arise
that are physically connected with view to different kinds of
disorder.

�a� How fast does the chain localize the energy on their
particles?

�b� Is there a maximum permissible degree of localiza-
tion?

�c� When does an escape over the barrier happen?
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For the last question, the statistical research requires a
numerically practical specification of the escape event. Like-
wise, for the study of the ordered limiting case of our system
studied in �3�, we define an escape time Tesc

�n� of one unit as
the moment, at which it passes through the value qesc
=5qn;max 	an=1,�n

2=2=10 beyond the barrier. With this value of
qesc, it is assured that all values Un�qesc�, which are attained
in the disordered system, are sufficiently lowered, so that the
return of an escaped unit over the barrier into the potential
well is practically excluded. Then the escape time Tesc of the
chain is the average of Tesc

�n� over all its units.
The numerical integration of the equations of motion was

performed using a fourth-order Runge Kutta method. Finally,
we remark that the results of our simulations do not depend
on a specific choice of initial conditions like the one de-
scribed above where all the energy is initially of kinetic type.
Equivalent results are obtained for initial conditions where in
the beginning the kinetic energy is zero and the particles
possess only potential energy or the initial energy is a sum of
kinetic and potential energy. The key measure in all these
cases is the energy content per particle which has amount to
only a small part of the barrier energy.

III. ESCAPE DYNAMICS

In this section, we study the dynamics of chains consist-
ing of N=100 coupled particles. We deal with different kinds
and strengths of disorder in the on-site potentials, while we
propose a fixed coupling strength �=0.3 and initial values
pn�t=0�
0.547, qn�t=0�=0 according to a homogeneously
excited chain at t=0.

Thus, without parametric disorder, the excitation of the
chain, i.e., the energy distribution, would remain homoge-
neous for all times due to the defined initial conditions. For a
study of the influence of the degree of disorder, we tune the
disorder parameter �B, enabling us to render the system ex-
iguously disordered or nearly spatially periodic. Yet, one
could also take the opposite approach: what is the influence
of nonlinearity on phenomena that occur typically in linear
nonperiodic �disordered� lattices?

In particular, the impact of disorder on the mobility of
discrete breathers occurring in ordered discrete systems is of
importance for the escape process. In the latter system, one
finds scenarios where breathers collide, forming a new
breather with larger amplitude. Ultimately, the mobility
could be important in our system to reach strong energy lo-
calization �at least� in a region of the lattice enabling passage
through the transition state so that the chain can surmount
the barrier �3�. If, in general, all breathers are static and have
insufficient energy for passing, an escape gets potentially out
of reach.

Thus, an imaginable negative influence of disorder on the
breather mobility is expected to critically impede the escape
dynamics—as a result causing longer escape times. Further-
more, if we suppose alternatively that disorder has no sig-
nificant effect on the breather mobility, then it would be con-
ceivable that breathers move through the lattice search and
focus a sufficiently low barrier Bn�B—triggering a dynami-
cal transition of the chain beyond the barrier. It is remarkable

that escapes promoted in this way would occur without the
demand for more energy localization compared to the or-
dered case.

On the other hand, linear waves can become localized in
disordered systems due to Anderson localization �17–19�.
Then, energy transport properties are degraded �18�. In
purely linear disordered systems, Anderson modes are immo-
bile �20�. The disorders included in the model systems con-
sidered in �6–12� have their influence on the respective lin-
earized system in common. In contrast, our system with
disorder in the nonlinearity parameter an and constant �n

2

possesses a spatially periodic linearized system and thus
plane wave solutions.

A. Influence of disorder on the escape times

In the event of escape, the passing over the barrier does
not occur isochronously due to the underlying self-organized
chaotic dynamics. Normally, one escaping particle pulls its
nearest neighbors and in this manner the chain moves suc-
cessively beyond the barrier. Meanwhile, the first escaping
particle accelerates strongly in the positive direction,
whereby a numerical overflow impends. Hence, we restrict
the coordinates to the limit qend=104.

In contrast to the ensemble average of one system over
random initial conditions considered in �3� for the ordered
limiting case, our mean value for the escape time is obtained
by averaging over randomized systems with respective equal
initial conditions qn�t=0�=0 and pn�t=0�
0.547. Hence,
every particle has an initial energy pn

2�0� /2=0.15 amounting
to 11.25% of the mean barrier height B=4 /3. In Fig. 2, we
show the resulting mean escape times for different strengths
of disorder. Interestingly, disorder in an �left panel of Fig. 2�
facilitates and disorder in �n

2 impedes the escape, respec-
tively. For �B=0.15 �disorder in an�, escapes occur on aver-
age three times faster than in case of disorder in �n

2—for
�B=0.4, about ten times faster. Declaring this as a main
result, in the following, we gather additional information,
which illuminate the different influence of disorder on the
escape dynamics from various angles.

Let us first have a view on two exemplary spatiotemporal
evolutions of the particle energies

En�t� =
pn

2

2
+

�n
2

2
qn

2 −
an

3
qn

3 +
�

4
�qn+1 − qn�2 +

�

4
�qn − qn−1�2.

�16�

We use density plots in Fig. 3 to depict for both kinds of
disorder the evolution until the first particle has escaped. The
translation between gray scale and energy value is given in
the key. The ordinate displays the time and the x axis marks
the particle number n. The parameters are the same as in Fig.
2, but the disorder parameter is fixed: �B=0.4. In addition,
we show the uniformly randomized barrier energy of each
particle above the panels of the evolutions. In the system
with disorder in an �left panel�, the particle n=19 is the first
passing the barrier after approximately 780 time units. For
disorder in �n

2, the escape occurs expectedly slower. After
approximately 3600 time units, the particle n=60 passes be-
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yond the barrier. It is a relatively fast escape, because the
mean escape time yields round about 5800 time units. In
both simulations, breathers emerge. They tend to be situated
at sites with lower barrier. Pinned breathers dominate the
energy landscape more in the right than in the left simula-
tion. One breather starting at site n=30 in case of disorder in
an moves during the simulation time over ten sites to merge
at n=19 with its neighboring breather inducing the escape.
Such distinct mobility signature cannot be found in the right
panel. There, the breather at n=60 exhausts little by little the
energy of the ten nearest particles. Crucially, in both cases of
disorder the starting breathers have too small amplitudes for
an escape. They have to interact at least by an exchange of
energy or, more effectively, they have to merge.

Since the chain needs due to the uniform initial conditions
already disorder in the parameters �e.g., �B�0� to start in-
teraction followed by any possible localization, the escape
times for our system in case of �B→0 could be rather long.
For �B=0 and uniform initial conditions, escape is impos-
sible, because the initial particle energy is smaller than the
barrier energy B and no interaction between the particles

occurs. Hence, the escape times for disorder in �n
2 could

exhibit a minimum. Therefore, we calculate escape times
also for exiguous �B. The results for the mean escape time
are shown in Fig. 4 over a logarithmical �B axis for disorder
in an �dark� and disorder in �n

2 �bright�. The coupling
strength and the initial momenta are the same as in Fig. 2.
Indeed we find for disorder in �n

2 the shortest mean escape
times for �B�0.01. Huge protractions for less disorder are
not visible. On the other hand, when starting from nonflat
initial states the problem of escape divergence for �B=0
could be avoided. However, such a study is not in the scope
of the present paper.

B. Influence of inhomogeneous barriers on the escape times

Let us again have a view on the on-site potentials and
their barriers

Un�qn� =
�n

2

2
qn

2 −
an

3
qn

3, Bn =
��n

2�3

6an
2 .

Disorder in an or in �n
2 is connected with inhomogeneous

barriers and also with qualitatively different localization be-

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5
△B

〈T
e
s
c
〉

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.1 0.2 0.3 0.4 0.5
△B

〈T
e
s
c
〉

FIG. 2. Mean escape times �Tesc for disorder in an �left� and disorder in �n
2 �right� versus the strength of disorder �B. Each plotted mean

escape time is the average of 1000 ensemble members. The ordinates are differently scaled. Although both kinds of disordered systems have
equally distributed barrier energies Bn including the global equal mean barrier energy B=4 /3, a complementary influence on the mean
escape time occurs. Coupling parameter value: �=0.3. Initial values: pn�t=0�
0.547, qn�t=0�=0.
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FIG. 3. �Color online� Density plots of En�t� �Eq. �16�� for �B=0.4. Left �right�: disorder in an ��n
2�, n=19 �n=60� is the first escaping

particle. Coupling parameter value: �=0.3. Initial values: pn�t=0�
0.547, qn�t=0�=0. The time-axis �ordinate� is differently scaled left
against right. The breathers in the left seem to be less pinned or less numerously pinned. In both cases the initial visible breathers �dark
traces� are not able to induce an escape. Only after clear visible interactions of more than one breather, an escape occurs. Above: the concrete
randomized barrier energies Bn for each site n. The breathers tend to be situated at sites with low Bn, ergo at soft sites.
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havior. We have incorporated these kinds of disorder based
on equal distributions of the barrier energies. Strictly speak-
ing, if there is a straight influence of inhomogeneous barriers
on the escape times, we could not extract it comparing the
results of disorder in an with disorder in �n

2 for a fixed �B.
By the way, this has been the motive for investigating ex-
actly these kinds of disorder. Thus, we demonstrate in the
following that the different escape times shown in Fig. 2 in
Sec. III A must have other reasons. To this end, we consider
now indirectly the influence of inhomogeneous barriers.

A spatially periodic system with inhomogeneous barriers
is impossible to create; moreover, periodicity and inhomoge-
neity are rather a contradiction. In other words, we cannot
separate the influences of nonperiodicity and different barrier
energies for the investigation of escape events and escape
times. However, we can create systems with nonperiodicity
and homogeneous barriers. In Sec. II, we have already intro-
duced the disorder with constant Bn=B�4 /3 but variable an
and �n

2. Due to the variable �n
2, the disorder with constant Bn

and disorder in �n
2 have a similar strong effect on the linear

regime. The escape times for disorder with constant Bn are
plotted in Fig. 5. The coupling parameter is again �=0.3, and
the initial conditions are qn�t=0�=0 and pn�t=0�
0.547.
Compared to disorder in �n

2, significantly longer mean es-
cape times occur for �B�0.25—e.g., for �B=0.4 nearly
double as long. The inset of Fig. 5 depicts the same data with
a logarithmical y axis. Clearly, in the presented range, the
mean escape time depends nearly exponentially on the dis-
order parameter in case of disorder with constant Bn. Most
importantly, we infer that the inhomogeneous barriers facili-
tate the escape.

For the present study, a system size N=100 was chosen
because then the lattice system is large enough that wave
phenomena such as spontaneous energy localization,
breather formation, and their merging are supported and, on
the other hand, the numerical computations are not too time

consuming. Furthermore, the results for the disordered sys-
tem can be compared with the one obtained in Ref. �3� for
the ordered chain of length N=100. Nevertheless, simula-
tions for the disordered system were performed also for
larger chains �up to N=1000 particles� yielding practically
the same results.

IV. INFLUENCE OF DISORDER ON THE ENERGY
LOCALIZATION

In the last sections, we have illustrated that starting from
an initial flat state configuration, where each unit possesses
by far less energy than the barrier height, pronounced energy
localization is necessary to initiate an escape of the chain
beyond the barrier. In fact, the initial energy distribution,
given by

pn�t = 0� 
 0.547,

qn�t = 0� = 0 ⇒ En�t = 0� 
 0.15 = 11.25%B , �17�

is homogeneous, i.e., it is a completely delocalized state,
where each unit possesses an equal amount of energy. Due to
the interaction between the units formation of breathers may
ensue. The escape occurs when one breather concentrates
sufficient energy on a few particles of the chain. Thus, these
particles develop a critical configuration bringing one
particle—the first escaping particle—sufficiently far beyond
the barrier.

The required critical configuration may concern only a
few particles while the rest of the chain may even stay less
excited. In the numerical simulations, one rather observes the
emergence of a pattern of breathers in the simulations. Mea-
surements of energy localization could have problems to dis-
cern between patterns, which permit fast escapes or cause
slow or hamper escapes. Therefore, the probable best mea-
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2 �bright� for small �B. Besides the
logarithmical x axis the plots are made in an analogous manner to
Fig. 2 including same parameters and initial conditions. For exigu-
ous disorder it takes longer time until breathers grow, inducing the
escape dynamics. Disorder in an produces for exiguous disorder
strengths the slower escape times in contrast to larger disorder seen
in Fig. 2.
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FIG. 5. Mean escape times �Tesc for disorder with constant Bn

versus the disorder parameter �B. It is an analogous plot to Fig. 2,
which shows the mean escape times for disorder in an and disorder
in �n

2, respectively. Coupling parameter value: �=0.3. Initial values:
pn�t=0�
0.547, qn�t=0�=0. Inset: same data forming nearly a line
with a logarithmical ordinate. This disorder with a strong disordered
linear regime like disorder in �n

2 but homogeneous barriers Bn pro-
duces significantly longer mean escape times for �B�0.25.
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surement is the mean escape time itself as the answer of the
question, how fast does the chain localize the energy reach-
ing the critical configuration for an escape? Investigations in
the last section show that for not too small values of the
disorder parameter �B disorder in �n

2 reduces and disorder in
an expedites the process of developing such energy localiza-
tion which permits an escape.

In the following, the intention is to gain more insight into
the impact of disorder on the process of energy localization.
The energy localization is rather a physical feature, which
does not lead strictly to a certain physical quantity. Nonethe-
less any measurement of energy localization should detect
our initial state as a perfectly delocalized state. In the follow-
ing section, we investigate time-continuous energy localiza-
tion quantities based on the site energies En�t� defined in Eq.
�16�. First, we investigate the partition number. Second, we
consider the time-evolution of the vertices of the energy re-
lief.

A. Partition number

The partition number for a system with N particles is de-
fined by

P�t� =

��
n=1

N

En�2

�
n=1

N

En
2

=
E2

�
n=1

N

En
2

. �18�

Due to the conservation of energy, P�t� is the reciprocal of
the quadratic mean of the N particle energies En. Hence, the
co-domain of the partition number lies in the interval 1
	 P�t�	N. A totally localized energy on one particle leads to
P=1, whereas a completely homogeneous distribution �for
example, our initial state� yields P=N. One could say P�t�
measures the number of the strongly excited sites �4�.

For a reasonable statistical analysis, we consider the dy-
namics for the different realizations of disorder up to the
point, when the chain is in the process of escaping or has
already realized the escape. The prerequisite to escape is
connected with sufficiently pronounced degree of localiza-
tion and the emergence of energy localization in the form of
breathers which is accomplished when one or a few particles
are pushed behind the barrier exceeding the position qn
�3�n

2 / �2an�. Thus, we terminate each simulation, when the
first particle has reached a negative on-site potential energy,
respectively, the second zero-point

Un�qn� � 0 ⇔ qn �
3

2

�n
2

an
. �19�

The number of ensemble members

M�t� ª number of chains for which inequality

�19� was never true until the time t �20�

decreases with the time and hence, the mean partition num-
ber is given by

�PM�t� =
1

M�t� �
m=1

M�t�

Pm�t� . �21�

With the subscript M�t�, we denote this version of ensemble
average also for other quantities.

Figure 6 displays mean partition numbers for the kinds of
disorder in an �left�, in �n

2 �right� and for linear disorder
�inset of the upper right panel�. M�t� starting from M�t=0�
=1000 is plotted in the panels below.

Dashed curves belong to �B=0.15, for which the mean
escape time �Tesc in case of disorder in �n

2 is three times
larger than for disorder in an. Solid curves represent the
value �B=0.4 for which escape of chains evolving with dis-
order in �n

2 is nearly ten times slower than their counterpart
with disorder in an. Depicting also one nearly ordered non-
linear case, the quantities �dashed-dotted curves� for �B
=0.001 in case of disorder in an are shown.

The stronger energy localization is, the lower is the asso-
ciated partition number. A few effects causing the energy
localization can be indirectly elicited: first, more disorder
speeds up the beginning of energy localization. Comparing
linear disorder with nonlinear disorder for exiguous disorder
�B=0.001, we second infer that nonlinearity causes a strong
energy localization. Third, a certain energy localization
��PM�t��50—inset in the upper right panel�—appears even
in systems with significant disorder without nonlinearity.
Fourth, by means of the solid curves for the ensembles
evolving with large disorder �B=0.4, we see that disorder in
an beats the partition number conspicuously more than dis-
order in �n

2, which is in accordance with shorter escape times
for disorder in an. We interpret this behavior as a conse-
quence of Anderson localization impeding the mobility of
the breathers in case of disorder in �n

2. Thus, in that case,
collisions along with merging of breathers occur less numer-
ously.

Disorder in an: the partition number strongly drops after
approximately 300 time steps detecting arising breathers. Af-
ter the first local minimum, the typical breathing of the
breathers is reflected by the graph of the partition number.
After half of the 1000 chains has escaped—at t�1250,
�PM�t� saturates at a value of approximately 25. For higher
�B, the energy localization occurs faster and the breathing is
less pronounced. Since all curves nearly saturate at a similar
level, we depict the differences with reference lines, which
have a distance of 2.5 to each other. It is interesting that in
case of strong disorder �B=0.4 in an, the energy localization
stops at about 28 above the curves for �B=0.15 and �B
=0.001, although the mean escape time is much shorter.
Since for �B=0.4 very low barriers can be found in the
lattice, the chain needs less localization than for a lower �B.
Whether or not increasing disorder in an assists energy local-
ization, the question would stay unanswered. But as we have
discussed in Sec. II, the disorder in the nonlinearity with
homogeneous harmonicity parameters belong inseparably to
inhomogeneous barriers.

The partition numbers in case of disorder in �n
2 �right�

saturate before most of the chains have escaped contrary to
the behavior for disorder in an. The Anderson localization as
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a hindrance for moving breathers in case of linear disorder in
�n

2 could explain on the one hand the long escape times and
on the other hand the little differences of the energy local-
ization, because Anderson localization itself decreases the
partition number. In the following, we concentrate directly
on energetically highest vertices of the En�t�.

B. Vertices of the energy relief

Since one particle sufficiently far behind the barrier is
able to pull the rest of the chain, an interesting quantity rep-
resents the evolution of the highest relative particle energy of
the chain given by


E1st max�t� ª
1

E
max
n=1

N

En�t� .

It measures the capability of the respective disordered system
to localize a huge part of the energy on one site more con-
cretely than the partition number. Our initial value pn�0�

0.547 yields 
E1st max�0�=1%.

Furthermore, we also compute the second highest particle
energy by taking the maximum of the sequence En without
the first highest value—and compute analogously the third
highest value and so on. We denote this procedure with “ � ”
and the ith highest particle energy is given by


Eith max ª
1

E
max

�

En�t� . �22�

As discussed in the last sections, we are interested in differ-
ent ensembles of systems distinguished by the kind and the
strength of disorder. Hence, we calculate the ensemble aver-
age �
Eith maxM�t� over M�t=0�=1000 simulations as de-
scribed in the last section �see expressions �19�–�21��. The
respective ten mean highest relative particle energies in case
of disorder in �n

2 �right panel� and an �left panel� are shown
in Fig. 7 for �B=0.4.

We have obtained faster escapes together with lower par-
tition numbers for �B=0.4 in case of disorder in an com-
pared to disorder in �n

2 �cf. Secs. III A and IV A�. Except for
the beginning, we observe here faster and stronger energy
localization for disorder in an. At t�700 the curves for dis-
order in an saturate, i.e., they fluctuate around fixed values.
The fluctuations result from the diminishing number of en-
semble members M�t� due to the short escape times. The
energy localization does not continue to increase, because
the chains with most localized energy achieve escape and
hence they leave the ensemble. The curves for disorder in �n

2

saturate at t�2000 �we have also observed later times�. For
less disorder, we find that the level of saturation is higher,
since in that case, due to less differing barrier heights, the
chain has to target higher energy vertices for an escape.

Since in the exemplary energy landscape En�t� shown in
Fig. 3 single site breathers and also multibreathers were vis-
ible, multiple 
Eith max could lead to only one multibreather.
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FIG. 6. �Color online� Mean partition number �PM�t� in the above panels and the number of in the well remaining chains M�t� �Eq. �20��
in the bottom panels versus time for disorder in an in the left panels, disorder in �n

2 in the right panels. In the inset �PM�t� for linear disorder
is depicted. Selected values of the disorder parameter: �B=0.001 �dashed-dotted�, 0.15 �dashed�, and 0.4 �solid�. M�t=0�=1000 chains are
pursued. Coupling parameter value: �=0.3. Initial values: pn�t=0�
0.547, qn�t=0�=0.
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Thus, the mean highest relative particle energies are not
suited to measure the number of breathers in the lattice.
Therefore, we introduce a simple counter for the vertices of
the energy relief

Zg�t� = �
�n	EnEn−2,En−1,En+1,En+2∧En�g�E/N��

1, �23�

which is proposed to count vertices, which have a distance of
at least three sites to each other. The subscript g is connected
with an additional condition for counting, which offers infor-
mation about lower and higher vertices. E /N is the �constant�
average of the En over the N particles. We have performed
calculations for g=1, 3, 5, and 7. Figure 8 depicts the corre-
sponding mean values for �B=0.4. The mean number of
vertices higher than E /N �g=1—solid curve� drops slower
for disorder in �n

2. The breathers encounter difficulties accu-
mulating energy from the lattice, which is somehow stored in
localized Anderson modes. One finds also more vertices with
En�3E /N �dashed curves� for disorder in �n

2, but disorder in
an generates more high energy vertices, especially those with
En�7E /N �dotted curves�. We have performed these simu-
lations also for �B=0.15. The differences between disorder
in an and disorder in �n

2 are less significant but qualitatively
the same as for �B=0.4.

We have noted earlier that without disorder, typically low-
amplitude breathers can move through the lattice, forming
high vertices as a result of breather merging in the energy
relief. Disorder in �n

2 seems to disable such a spatial free-
dom, particularly for low-energy vertices exhibited in the
disordered linear regime. But the building of a quite craggy
energy relief is still intact. Probably nearly all vertices are
pinned. Thus, for disorder in �n

2, the formation of large-

amplitude breathers occurs not so often as for disorder in an,
for which the periodic linear regime prohibits Anderson
modes and mobile breathers often merge.

We have also investigated the mean number of vertices
with the less strict condition En�En−1 ,En+1 and find only for
g=1 significantly more vertices. Hence, the distance of two
neighboring breathers is usually more than two lattice sites.
Furthermore, we infer that the plots of the mean highest rela-
tive particle energies mostly entail vertices of different
breathers. Broad multibreathers were not seen in our simula-
tions.

Next, we investigate whether the vertices have a tendency
to occur at specific sites, which is important bearing in mind
the inhomogeneity of the barriers.

V. MOST AND LEAST PREFERRED ON-SITE
POTENTIALS

In Sec. III B, we have investigated the influence of inho-
mogeneous barriers on the escape times. The longest mean
escape times have been found for disordered systems with
constant barrier energies Bn. We have inferred that inhomo-
geneous barriers are a feature which facilitates the escape
giving one quite clear reason for the faster escapes times in
case of disorder in an compared to the ordered limiting case.
For variable �n

2, the escape times increase with more degree
of disorder due to the disordered linear regime, whereby a
trend to pinned, nonmerging breathers is seen. Moving
breathers are not only able to merge with each other. They
can also search low barriers, where their energy suffices to
push one particle beyond the barrier. We think that this sce-
nario dominates the escapes dynamics in the case of disorder
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FIG. 7. The 10 mean highest relative particle energies �
Eith maxM�t� �Eq. �22�� versus time for disorder in an �left� and disorder in �n
2

�right�. Parameter value: �B=0.4. Coupling parameter value: �=0.3. Initial values: pn�t=0�
0.547, qn�t=0�=0. At the beginning, the
ensemble has M�0�=1000 members. Since M�t� decreases with time, the curves especially for disorder in an with the faster escape dynamics
fluctuate strongly at the end. At the beginning, the fluctuations are caused by similar collective breathing. Then, especially the highest curves
for disorder in an increase faster and outperform those for disorder in �n

2. For an escape, the highest vertices are important and thus escapes
occur at longer times for disorder in �n

2.
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in an. An additional advantage is given, if from the beginning
of the localization of energy, sites with lower barriers would
be more preferred than those with higher barriers.

We calculate for t�0 the most and least preferred sites
with their barrier energies given as follows:

bmost = Bm	�Em = max
n=1

N

�En�� ,

bleast = Bl	�El = min
n=1

N

�En�� . �24�

The actual location is not of interest. In Fig. 9, we plot the
temporal behavior of the ensemble average �as introduced in
Sec. IV A� for the disorder parameter �B=0.4.

The reference line shows the mean barrier energy at B
=4 /3. The range of the ordinate is bounded from the maxi-
mal possible barrier energy B+�B and the minimal possible
one B−�B. At the beginning, �bmostM�t� drops nearly instan-
taneously to one of the lowest thinkable barrier energies—
maybe it is the lowest. In contrast, �bleastM�t� rockets up. We
suppose that this phenomenon appears on the complete lat-
tice, i.e., the energy drops instantaneously into the rather soft
local potentials with lower barriers.

We know from the last sections that after approximately
t=500 time units, a pronounced energy localization has oc-
curred. At this time, the curves in Fig. 9 begin to fluctuate
around fixed values. For both kinds of disorder lattice sites
with on-site potentials with low barriers are preferred to be
distributed with energy, which facilitates the escape. The
�dashed� �bmostM�t� for disorder in �n

2 is under the �solid�
�bmostM�t� for disorder in an situated. The preference of the
energy to remain at soft sites is more dominant for disorder

in �n
2 than for disorder in an, for which nonetheless faster

escapes are observed. An explanation is the larger mobility in
case of disorder in an. By moving through the lattice, the
breather visits a number of sites increasing �bmostM�t�. From
the curves for �bleastM�t�, it follows that breathers avoid sites
with higher barriers, which could appear as barricades for
moving breathers especially in case of disorder in �n

2.
In the exemplary simulations presented in Sec. II �see Fig.

3�, the breathers evolve mostly in valleys of the relief of
barrier energies. Long escape times occur probably in lat-
tices, where these barricades are unfavorably situated hinder-
ing the merging of breathers. Contrarily, one might ask how
a lattice, defined by the sequence of barriers Bn and the kind
of disorder, should be constructed to accomplish a fast es-
cape? First, it should have kind of pores, i.e., sites with very
low barriers. Second, a low number of barricade sites with
large barriers is advisable. Third, if the breathers tend to
move to low barriers, a relief of weak slopes with the pore or
pores at its lowest point�s� would expedite additionally an
escape. And of course, one should “choose” to use only a
variable nonlinearity parameter to make the barrier inhomo-
geneous.

VI. SUMMARY

We have investigated the deterministic and conservative
dynamics of a one-dimensional chain of N harmonically
coupled particles. Each particle evolves in an individual cu-
bic on-site potential, which exhibits a barrier separating a
metastable state from an attractive domain. The shape of the
cubic potential is characterized by a harmonicity parameter
and an anharmonicity parameter. Our main interest has been
directed to the influence of two different kinds of parametric
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FIG. 8. �Color online� Mean number of vertices �Zg�t�M�t� �Eq. �23�� of the energy relief En�t� versus time for disorder in an �left� and
disorder in �n

2 �right�. Parameter value: �B=0.4. Coupling parameter value: �=0.3. Initial values: pn�t=0�
0.547, qn�t=0�=0. At the
beginning the ensemble has M�0�=1000 members. With g, we distinguish the energy height of the vertices. Only vertices that are more than
g times higher than the mean particle energy are counted. For allocation of the line types, see key. For disorder in �n

2, one finds more
small-amplitude localized oscillations, but disorder in an leads to more large-amplitude breathers �g=7�. Hence, we can imagine a more
cliffy relief with less immense crests than for disorder in an. This type of energy relief complicates the escape.
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disorder on the system behavior, especially the escape dy-
namics. Disorder is involved either in the harmonicity or
anharmonicity parameter of the on-site potentials yielding a
uniform distribution of the barrier heights around a mean
barrier energy. A measurement of the strength of disorder has
been introduced, allowing a comparison between the behav-
ior of the systems with different kinds of disorder.

Initially, the chain is situated at the bottom of the potential
wells and all of its units possess equal momenta, which is the
starting configuration is a flat state. Crucially, the energy
content of each unit does not suffice for immediate barrier
crossing. Ensuing interaction between the units of the chain
may lead to breather formation going along with such pro-
nounced energy localization that the chain passes through the
transition state with subsequent escape over the barrier. In-
terestingly, with increasing strengths of disorder, the mean
escape time decreases for disorder in the anharmonicity pa-
rameter and increases for disorder in the harmonicity param-
eter. Typically one observes a scenario of rather movable
breathers for disorder in the anharmonicity parameter and in
contrast a picture of pinned breathers for disorder in the har-
monicity parameter hindering the merging to form large-
amplitude breathers. We have confirmed that the reason for
this difference is indeed related to the Anderson localization
present in the linear limiting periodic case of the latter sys-
tem.

Furthermore, we have considered a third kind of disorder
for which both the harmonicity as well as anharmonicity

parameter are taken as random quantities being arranged in
such a way that the resulting barrier energies are all equal
along the chain. Strikingly, for this kind of disorder, there
results longer mean escape times than in the case of disorder
in the harmonicity parameter, for which the barrier heights
are inhomogeneous. Conclusively, inhomogeneous barrier
heights facilitate faster escape.

We also have pursued the question that on-site potentials
are mostly preferred or avoided when the energy is distrib-
uted among the lattice units. For disorder either in the har-
monicity parameter or anharmonicity parameter, the particle
with the largest energy evolves on average in a softer local
potential, which has per construction a lower barrier. It
seems that the arising breathers do not only prefer to be
centered localized at soft local potentials, but they are also
generated rather at these sites. The site most avoided by the
energy distribution has on average a barrier height higher
than the mean barrier energy. Obviously sites with large bar-
riers act as barricades for breathers moving through the
lattice—foremost in case of disorder in the harmonicity pa-
rameter.

Finally, the presented analysis of different kinds of disor-
der, having purposeful differences and similarities, could
help generally to better understand phenomena of disordered,
nonlinear lattices particularly with view to the formation pro-
cess of discrete breathers.
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FIG. 9. �Color online� Mean values of the barrier energy of the most and least preferred sites �bmostM�t� and �bleastM�t� for t�0. Parameter
value: �B=0.4. Coupling parameter value: �=0.3. Initial values: pn�t=0�
0.547, qn�t=0�=0. The simulations are made with M�t=0�
=1000 chains and for disorder in �n

2 and disorder in an �see key�. The reference line shows the mean barrier energy at B=4 /3. In the first
few time steps, the on-site potential with one of the lowest barrier is energized and the potential with one of the higher barrier de-energized
mostly. Later, one finds plateaus, which evidence that softer sites with lower barrier are more preferred—especially in case of disorder in �n

2,
wherein the breathers tend to be pinned at these sites.
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